Centor for

(¢ £

Building 1103
Stennis Space Center
Mississippi 39529

Phone 601-688-5737
FAX 601-688-7072

F)
I "I The University of

Southern Mississippi

GLENDA SOFTWARE DESIGN

Benjamin R. Seyfarth
Jerry L. Bickham

Germana Peggion

19950327 061

TR-3/95
Approved for public release; distribution is unlimited February 1995

The Center for Ocean & Atmospheric Modeling (COAM) is operated by The University of
Southern Mississippi under sponsorship of the Department of the Navy, Office of the
Chief of Naval Research. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the author(s) and do not necessarily reflect the
position or the policy of the U.S. Government, and no official endorsement should be
inferred.

~ Aocogslon For el

| BTYS GRARI = .
DIIC TAB '
Unennounced o

Justificatic

B'Y -
Aveilapility Codes

Avail andfor

Bist Spseial

Executive Summary

Computer capacity was, and marginally still is, a limiting factor for the development
of basin-wide, eddy-resolving ocean circulation models. For example, the North Atlantic
~ Ocean configuration should extend from the American (85W) to European/African (OE)
coasts, from 20S (to include the Tropical Convergence Zone) to the Fram Straits (75N).
A1 / 4 degree resolution (the average grid spacing for a minimum parameterization of
mesoscale variability) requires a horizontal mesh of about (344 x 384) points. To re-
produce the vertical structure of the ocean dynamics and include the interactions of the
several water masses that are present in the basin, the vertical resolution should include
at least 15-20 collocation points. This implies a grid mesh of about 2x108 points, with a
heavy burden on computer memory and computation requirements. Parallel processing
may alleviate this problem. In view of basin-wide applications, it makes sense to divide
the data matrix for the basin into subdomains and to allocate one CPU for each subdi-
vision of the original matrix. With this allocation, each processor updates its matrix and
then propagates the boundary values to its neighbors.

In order to provide an adequate representation of the mesoscale features, an alterna-
tive is to develop a modeling system that connects a large-scale, basin-wide model with
high-resolution, regional models concentrated in selected areas of the domain. However,
a few unsolved questions are associated with such an approach. First of all, it is nec-
essary to implement nesting algorithms that ensure a correct transfer of energy between
the coarse and fine grids. Moreover, it is necessary to develop appropriate computa-
tional techniques that keep a continuous exchange of information as the computations
proceed. Again, parallel processing can provide such a tool: two distinct networks of pro-
cessors perform the coarse and fine grid computations, separately; the updated interface
variables are communicated to a central server that applies the nesting algorithms and
transmits the new data back to the networks.

This document introduces a new parallel processing software system and evaluates
and discusses its feasibility to ocean circulation modeling. Applications will be presented

in a following document.

Abstract

Glenda is an environment for parallel processing which is modeled after the Linda

language and utilizes the PVM software system to provide underlying communications.
The resulting software maintains the friendly paralle! programming, typical of Linda, and
the PVM efficiency in message-passing operations.

This document describes the functions, data structure, and algorithims of the Glenda

software architecture.

il

1 Introduction

Glenda is a parallel programming system modeled after the Linda system which is a
easily-learned parallel programming environment (Carriero Gelernter, 1990). Glenda is
implemented using the PVM (Parallel Virtual Machine) for communications.

PVM, developed by Oak Ridge National Laboratory (Beguelin et al., 1991), is a soft-
ware system that allows the creation of and access to a concurrent computing system
made from networks of loosely-coupled processing elements. The hardware collected
into a user machine may be single-processor workstations, vector machines, parallel su-
percomputers, or any mixture of the above.

To be as general and flexible as possible, PVM is based on a parallel message-
passing model. That is, the programmer must pack each item of a message into a mes-
sage buffer prior to sending it and, similarly, unpack the message components upon re-
ceiving a message.

The major attributes of PVM are:

® Can use a workstation network and/or a multi-CPU system

® Architectures can be mixed on a virtual machine

® Most popular architectures are supported

® Asynchronous message passing model

e Messages consist of multiple components of eight different data types
e Messages are accessed by an integer message type

® Supports barriers and signals

e Supports Fortran and C

® Consists of 53 functions for C and 36 for Fortran

Linda, a registered trademark of Scientific Computing Associates, is a process con-
trol mode! which is based on a global storage system called tuple space. Processes
may infoutput tuples of various lengths into the tuple space, using pattern matching on
tuple contents. This can be applied to model both passing and broadcasting directed
messages.

Linda tuples are manipulated using six basic operations, each of which either pro-

duces or consumes a tuple, viz.,:
e out produces a tuple
e in consumes a tuple
e inp consumes a tuple if available
e rd reads a tuple
e rdp reads a tuple if available
e eval executes a function in a subprocess producing a tuple

When using the Linda model and agenda parallelism, worker processes are all equally
capable and retrieve tasks from an agenda until all work is done. One master process
starts worker processes using the eval function. The master then sends tasks using
some agenda. Each worker program consists of a loop which retrieves tasks from the
agenda and sends results back to the master process. When all the data have been
received, the master process sends tasks with with recognizable illegal requests termed
poison pills to the worker processes to terminate their executions.

Although the six Linda operations are adequate for performing parallel programming
and are simpler to use than the analogous PVM functions, there are some significant
problems to overcome for making Linda as efficient as PVM in a message-passing envi-
ronment. The greatest difficulty is to avoid excessive communications.

Glenda was developed to provide the portability and efficiency of PVM with the ease-
of-use of Linda (Seyfarth et al., 1994). Glenda’s primary goals are:

2

Preserve Linda’s global tuple space model

Reduce the number of functions required by PVM

Maintain PVM’'s message passing efficiency whenever required

Maintain PVM'’s portability

Present Linda as an integral part of the host language.

Glenda applies the PVM system to perform communications and manages the global
tuple space in a manner similar to that used with the Linda language. If the global tuple
space is assigned to a single processor, applications might possibly experience excessive
network traffic. To avoid the problem, operations have been implemented that provide
direct tuple operations among the Glenda processes.

2 Glenda Primary Functions

2.1 Glenda Task Control Functions

There are three operations that control the task activities:

o tid = gl.mytid()
The operation starts Glenda’s activities and returns an integer which identifies the
calling task in the following Glenda and PVM function calls. A process must call
gl_mytid before any other Glenda operations.

o tid = gl spawn(name[,host])
A new task is started by a call to g1 _spawn. The name parameter is the name
of the executable file for the new task. The host parameter allows the optional
designation of a specific computer to execute the program. The return value is a
PVM task id. The newly-spawned task must call g1 _mytid before executing
any other Glenda functions.

o gl _exit
The purpose is to perform any required cleanup before the program exits and to
inform the tuple server that the task has been completed. Inturn, g1_exit calls
pvm_exit to inform PVM also of the task completion. However, gl_exit

does not call exit and, consequently, the program continues execution.

2.2 Glenda Global Tuple Operations

There are five Glenda operations which manipulate tuples in the global tuple space.
These are named and modeled after the related Linda operations, viz.:

° gl_out (name,..) places a tuple into the the global tuple space

° gl_in(name,...) gets a tuple from the global tuple space

e gl_inp(name,...) isapredicate version of g1 _in. It returns 1 if a match-
ing tuple exists and it gets the data for the tuple. It returns 0 if no matching tuple

exists.

¢ gl_rd(name,...) is similar to gl _in. The difference is that it retrieves a
copy of the matching tuple data without removing the tuple from the global tuple

space.
e gl_rdp(name,...) is the predicate version of g1 _rd.

All of these operations syntactically resemble C function calls with a variable number
of parameters. However, there are a few differences. In the Glenda language, the first
parameter for the calls is always the name of the tuple. This is either a C string constant
or a C array with a NULL-terminated string. The name is used by the tuple server to
rapidly identify the tuples. The remaining parameters are components of a tuple and
may be C constants, scalar variables or arrays of the basic C data types. in read and
input operations, a parameter may be preceded by a question mark, indicating that the
following variable has to be replaced by the value of the matching tuple. If the variable is

not preceded by a question mark, the operation must find a tuple with the same value of
the parameter.

Array components of a tuple may be followed by two optional fields that define the
length and stride of the array. When specified, the array length value is separated from
the array name by a colon. The specification is optional if the length is known to the C-
Glenda preprocessor. In gl _out, the length specifies how many array elements are
to be copied into the tuple. For input and read operations, the length field is an integer
variable indicating the length of the array to be received.

After the array length, the array stride parameter may be specified. It represents
the increment for copying the array elements into the tuple. The stride value is passed
unaltered into the appropriate PVM functions.

2.3 Glenda Directed Tuple Operations
In order to improve the overall performance, Glenda offers two operations that send and
receive tuples without passing through the tuple server. These two functions are:

e gl outto(tid, name,..) sends a tuple to one or more tasks.

e gl_into(name,..) receives a tuple sent directly to the task.

If the first parameter of gl_outto is a single integer variable, the tuple is directed to
the task identified by this id number. If the first parameter is an integer array, it identifies
a collection of tasks to receive the tuple. Since gl_ou‘tto sends tuples directly from
task to task, it is necessary to use gl_into for receiving these tuples. Matching within
gl_in‘to is similar to the other input operations, except that tuples that do not match,
are saved within the task instead of within the tuple server.

2.4 Examples
2.4.1 gl out examples

o gl out ("data", i, k, value)
Value can be a scalar or an array. If it is an array, the length is implicit.

o glout ("row", i, x:len)
Here, the length to output for x is given. X could be an array or a pointer.

e glout ("column", j, x[jl:len)
Here, we must specify the length to output. The preprocessor only keeps lengths

for single-dimension arrays.

2.4.2 glin and gl.inp examples

o gl in ("data", i, k, 7 value)
gl_inp ("data", i, k, 7 value)
These match on “data”, i and k returning data for value. Value can be a scalar or

an array. If it is an array, the length is implicit.

e gl in ("row", i, 7 x:len)
gl_inp ("row", i, 7 x:len)
These match on “row” and i returning data for the array x and returning the number

of items as len.

e glin (“"column", j, 7 x[3jl)
gl_inp ("column", j, 7 x[jl)
Assuming that x is a two-dimensional array, these match on “column” and j, return-

ing data into x[j]. The length is ignored.

2.4.3 gl.rd and gl rdp examples

e glrd ("data", i, k, 7 value)
gl rdp ("data", i, k, ? value)
These match on “data”, i and k returning data for value. Value can be a scalar or

an array. If it is an array, the length is implicit.

o glrd ("row", i, 7 x:len)
glrdp ("row", i, 7 x:len)

These match on “row” and i returning data for the array x and returning the number

of items as len.

2.4.4 gloutto and gl_into examples

e gl outto (tid, "data", i, k, value)
gl_into ("data", i, k, 7 value)
In this example, the PVM task id number tid is used to output a tuple containing
“data”, i, k, and value. Value can be a scalar or an array. The corresponding gl.into
matches on “data”, i, and k returning the data for vaiue.

e gl outto (tid : len, "data", i, k, value)
gl_into ("data", i, k, 7 value)
This example is the same as the one above; but instead of being sent to only one
process, the tuple is sent to all of the processes whose PVM task id numbers are
specified in the array tid of dimension len.

3 Glenda Support Functions

For a variety of reasons, it might be desirable to bypass the Glenda tuple matching op-
erations. The C-Glenda preprocessor provides five operations which pack a collection of
PVM function calls into a send/receive facility. The translated code makes use of the func-
tions: pvm_initsend, pvm_send, and pvm_mcast. The support operations

are:
e gl send(tid, msgtag,...) sends the package
e gl _recv(tid,msgtag,...) receives the package

o gl_wait(tid,msgtag,...) receives a message and may wait for more

messages.

e gl_pack packs the message

e gl_unpack unpacks the message.

In the function gl_send the first parameter can be a single value or an array of
PVM task id numbers, as in gl_outto. The second parameter, an integer, represents
the PVM message type. The remaining parameters are treated like the components of a
tuple.

Both gl_recv and gl_wait receive a message. The operation gl_recvre-
ceives a message and automatically unpacks it. On the other hand, gl_wait simply
receives a message and returns the PVM message value. After calling gl_wait, ei-
thergl_Trecvor gl _unpack might be used to unpack the message. In such a way,
gl_wait can wait for the reception of more than one message (msgtag =-1).
For completeness, Glenda also offers gl _pack, an operation which is compatible with

other PVM functions.

4 GQGlenda and Ocean Circulation Models

This document introduces Glenda, a new parallel processing environment which is mod-
eled after the Linda language and utilizes the PVM software to provide underlying com-
munications. The long-term objectives of this project are to investigate and evaluate the
feasibility of parallel processing for ocean circulation applications.

Ocean circulation models usually represent an ocean domain as a 3-D matrix of data,
each cell of the matrix consisting of about 5 double precision values. It makes sense
to divide the basin into subdomains and allocate one CPU for each subdivision of the
original matrix. With this allocation, each GPU computes new values for its matrix and
then propagates the boundary values to its neighbors. Then the CPUs would repeat this
process of calculating and propagating values until the simulation is completed.

It is clear that the amount of data to be propagated depends upon the coarseness
of the grid and the number of CPUs used for the simulation. Let's assume that our grid
consists of an IV by N square region to be processed by P2 cpuUs. Inthe figure below
we have a 100x100 grid to be processed by 4% = 16 CPUs. Each CPU is responsible for

computing new data for a 25 by 25 sub-matrix.

In the example, the boundary data is shown with dotted lines. Thereare 3 (P — 1,
in general) horizontal divisions with 2 rows of data to be passed (one row goes up and
the other goes down). Each row is width 100 (INV, in general). This yields a total of
2(P — 1)IN cells which must be passed up or down in the matrix for one iteration of
the simulation. The same is true for the vertical divisions, and the total of all cells to be
passed in any direction for one iteration is 4(P° — 1)IV.

Let's also assume that there are D bytes of data per cell to propagate after each step
of the simulation and that the data transfer rate in the systemis R bytes per second. The
communication time for one iteration is estimated to be:

4P —1)ND

T =
R

“For a collection of networked workstations on an Ethernet, R is about 100,000 bytes per

second of reliable communication. This is clearly not a large value for R; but networks

are commonly busy, so this is a fair estimate.
For a data matrix of about 350x350 horizontal grid points and 20 vertical collocation

points, and 5 double precision updating variables, the communication time estimate is:

AP — 1)350-20-5+8
7.2 ! -11.2% (P —1)
100000

Let's assume that the total CPU time for one iteration is 64 seconds. If new processors

are added, the communication time is increased, while reducing the computation time for
one iteration. This imposes a limit to the possible speedup in this environment. With
our Ethernet example, the limit is reached with 4 processors (P = 2). The computation
time estimate is about 16 seconds for modern workstations, and the communication time
estimate is 11.2 seconds. Adding more CPUs would not improve the efficiency of the
system.

It is apparent that Ethernet speed is not a good match for modern CPUs performing
ocean modeling. In the case of more tightly-coupled CPUs, as in a multiprocessor ma-
chine, the communications are internal and R will be reliably over 10 times as fast. The
value R = 107 bytes per second yields T" = 1.12 (P> — 1). With 16 CPUs (P = 4),
the communication time is T’ = 3.36 seconds while the computation time drops to 4 sec-
onds. Using more CPUs would cause the communication time to exceed the computation
time.

We realize that for full efficiency in a parallel environment it is necessary to formulate
numerical schemes that are most suitable for the new technology. In this respect, implicit
schemes, or models formulated with the rigid lid approximation are not optimal. The
associated algorithms are connected with the inversion of large matrices, requiring the
simultaneous solution of algebraic equations. Explicit schemes or free surface models
have a more direct applicability to parallel programming, because their formulation is very
regular and requires knowledge of variables at only a few adjacent points.

A work, currently in progress, is configuring an explicit, free surface, barotropic ocean
circulation model to parallel processing environments, and verifying the portability of the
model, taking advantage of a distributing computing and/or moderately parallel computer
system. These findings will be presented in a subsequent document.

Acknowledgments: This work was supported by the Office of Naval Re-

10

search (under Grant # N00014-92-J-4112).

References

[1] Beguelin, A., etal, A User’s Guide to PVM, Oak Ridge National Labora-
tory, Oak Ridge, TN, July 1991.

[2] Carriero, N. and D. Gelernter, 1990: How to write parallel programs.
A first course. The MIT Press, Cambridge, Mass., 232pp.

[3] Seyfarth, B.R., J.L. Bickham and M.R. Femandez, Glenda: An Environ-
ment for Easy Parallel Programming, Scalable High Performance
Computing Conference, Knoxville, TN, May 1994. :

11

A Installation and use guidelines

A.1 How to obtain Glenda

To obtain a copy of the Glenda software, e-mail your request to
seyfarth@whale.st.usm.edu
and a copy will be sent as soon as possible. In the future, an anonymous £tp server

may be set up to facilitate the distribution of the software.

A.2 Installation

If you received the . tar version, uudecode glenda.tar.Z.uue by typing:
> uudecode glenda.tar.Z.uue

then decompress glenda.tar by typing:
> uncompress glenda.tar.Z

and, finally type:
> tar -xf glenda.tar
If you received the . shar version, you have received about 6 e-mail messages
which should be saved into separate files. Each file should be edited to remove the
header lines as instructed within the files themselves. Then, each file is used as input for

the execution of the sh command as in:

> sh glenda.shar.1
> sh glenda.shar.2

Either of the distribution methods create Glenda directories within the current direc-

tory. The directories created are as follows.

® glenda / is the top level directory. It contains the Glenda source code, a Make-
file, and additional subdirectories. The subdirectories are:

— Cgpp / contains the C-Glenda preprocessor code

12

— ts / contains the tuple server code
— include/ contains the include files for ts/ and examples/ files
— doc/ contains documentation

- examples / contains examples of Glenda programs.

It is essential to specify the architecture of system (ex: ARCH=SUN4) You might
edit the Makefile in the glenda/, ts/, and examples/ directories to prevent

compiling for the wrong architecture.
The Makefiles expect the environmental variable PVM.ROOT tobe defined as the root

directory of the PVM3.x software and expect to write into the $PVM_ROOT/bin/$ARCH

directory.
SGI machines require the linking option —=1sun to access the XDR routines. This

must be added inside the ts/Makefile.

This Glenda version is written for PVM 3.x. However, it would need little effort to
connectto PVM 2.4. There is a file, pvmold . ¢, which is nearly complete for providing
PVM 3.x function calls, using the PVM 2.4 library. Unfortunately, pvmold . ¢ does not
have an equivalent version of the pvm_t ask function, which is used by the tuple server
and gl_us er . ¢ program to determine the tuple server task id number.

B C-Glenda Preprocessor

The C-Glenda preprocessor converts the source file containing the Glenda functions into
a . ¢ file, capable of being compiled by any C compiler. The C-Glenda preprocessor is
capable also of detecting syntax errors and specifying the type of the errors. Usage is as

follows:
> cgpp filename.cg

(the source code file mustend in . Cg).

13

B.1 Makefile Sample

The following sample clarifies how to compile the Glenda programs. Make sure that there
is a directory bin/ in the home directory and that the environmental variable ARCH is

properly defined.
ARCH = RS6K
PVMBIN = $(PVM_ROOT)/bin/$(ARCH)

PYMINCLUDE = -I$(PVM_ROOT)/include -I../include

cC = c89

CFLAGS = -g $(PVMINCLUDE)

PYMLIB = $(PVM_ROOT)/1ib/$(ARCH)
LIB = -L$(PVMLIB) -1lpvm3 -lm
USER = ../gts/gluser.o

This part converts a ‘‘.cg’’ file to a ‘‘.o’’ file.
The default .SUFFIXES parameter had to be changed to

accomplish this.
The -mv command can be removed at your convenience.

.SUFFIXES:
.SUFFIXES: .o .cg .c .f .y .1 .s

.cg.o:

-cgpp $*.cg
-$(CC) $(CFLAGS) -c $*.c
-mv $*x.c $*.x

14

Place each master file and its corresponding worker file here.

all: $(PVMBIN)/a $(PVMBIN)/b

$ (PVMBIN)/a: a.o
$(CC) -o $(PVMBIN)/a a.o $(USER) $(LIB)

chmod go+rx $(PVMBIN)/a

$ (PVMBIN) /b: b.o
$(CC) -o $(PVMBIN)/b b.o $(USER) $(LIB)

chmod go+rx $(PVMBIN)/b

clean:
rm -f *.0

C Tuple Server

Before invoking the tuple server, PVM 3.x. must be invoked with the proper configuration
parameters. Then, simply type:
> gts
at the prompt, and the tuple server is automatically placed in the background where it
continually tries to receive tuples. At this point, the master process is ready to start.
It is important to not invoke the tuple server without invoking PVM and the master
process without invoking the tuple server, first. A typical sequence of commands is as

follows:

> pvmd pvmhosts &
> gts
> master_filename

15

D Glenda Program Sample

This is an example of a Glenda code. The master file is & . Cg and the worker file is
b.cg. In this example, the process, a, outputs an array to multiple processes, b, and
waits for each process’s response.

a.cg

#include <stdio.h>
#include <glenda.h>

main(argc,argv)

int argc;
char *argv([];
{

int my_tid, a;
int Size, N, 1;
int *Data;

int j, Kids;
int kid, step;

my_tid = gl_mytidQ);

if (argc > 1) Size = atoi(argv[il);
100000;

else Size

if (argc > 2) N = atoi(argv[2]);
else N = 10;

if (argc > 3) Kids = atoi(argv[3l);

16

else Kids = 10;

gl_out ("Size", Size);
gl_out ("N", N);

for (i = 0; i < Kids; i++) {
gl_spawn ("b");
gl_out ("Kid", i)

Data = (int *) malloc (Size * sizeof(int));

for (j =0; j < N; j++) {
printf("Step %d of %d\n", j+1, N);
for (i =0; i < Kids; i++)
gl_out ("data", i, Data:Size);
for (i = 0; i < Kids; i++) {
gl_in ("OK", ? kid, ? step);
printf("Got OK from %d for step %d\n",kid,step+1);

¥

gl_in ("Size", Size)
gl_in ("N", N);

gl_exit();

b.cg

17

#include <stdio.h>
#include <glenda.h>

main(argc,argv)

int argc;
char *argv([];
{

int my_tid, a;
int Size, N, 1;
int *Data;

int k;

my_tid = gl_mytid();
gl_rd ("Size", ? Size)
gl_rd ("N", ? N);
gl_in ("Kid", ? k);
fprintf (stderr,"Kid %d, Size %d, N %d\n",k,Size,N);
Data = (int *) malloc (Size * sizeof(int));
for (i =0; i < N; i++) {
gl_in ("data", k, ? Data:Size);
gl_out ("OK", k, i);
}

gl_exit();

18

The files a. cg and b . ¢g are located in the directory glenda/examples/.
Another example includes the files mm. ¢ and mmworker . ¢ which are the master
and worker programs, written in PVM, for the execution of matrix multplications. The
files, created by Josef Fritscher (Technical University of Vienna) were acquired from the
newsgroup comp . parallel.pvm.

The filesmmgl . cg and mmgl_worker . cg are the corresponding Glenda ver-
sions. The files mmto.cg and mmto_worker.cg are also Glenda versions of
mm. ¢ and mmworker . c, but they make use of the gl_outto and gl_into

operations.

E Getting Help

Please communicate problems and bug reports to
seyfarth@whale.st.usm.edu

It would be helpful to describe your virtual machine configuration (hardware, PVM ver-

sion), include a short segment of code illustrating the problem, and describe how it fails.

Good luck with your work !

19

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewlng Instructions, searching existing data sources,
gathering and maintalning the data needed, and compieting and reviewing the collection of Information. Send comments regarding this burden estimate or any other aspect of
this collection of information, including suggestions for reducing this burden, to Washlngton Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

2. Report Date.
February 1995

1. Agency Use Only (Leave blank).

3. Report Type and Dates Covered.
Technical Report

4, Title and Subtitle.

GLENDA SOFTWARE DESIGN

5. Funding Numbers.

Program Element No.

Project No.

6. Author(s).
Benjamin R. Seyfarth

Jerry L. Bickham
Germana Peggion

Task No.

Accesslon No.

7. Performing Organization Name(s) and Address(es).

Center for Ocean & Atmospheric Modeling
The University of Southern Mississippi
Building 1103, Room 249

Stennis Space Center, MS 39529-5005

8. Performing Organization
Report Number.

TR-3/95

9. Sponsoring/Monitoring Agency Name(s) and Address{es).
Office of Naval Research
Code 1513: RKL
Ballston Centre Tower One
800 North Quincy Street
Arlington, VA 22217-5660

10. Sponsoring/Monitoring Agency
Report Number.

11. Supplementary Notes.

ONR Research Grant No. N00014-92-3-4112

12a. Distribution/Avallability Statement.

Approved for public release; distribution is unlimited.

12b. Distribution Code.

13. Abstract (Maximum 200 words).

Glenda software architecture.

Glenda is an environment for parallel processing which is modeled after the Linda
language and utilizes the PVM software system to provide underlying communications.
The resulting software maintains the friendly parallel programming, typical of
Linda, and the PVM efficiency in message-passing operations.

This document describes the functions, data structure, and algorithms of the

14. Subject Terms.

(U) GLENDA, (U) LINDA, (U) PVM,

(U) PARALLEL,
(U) PROGRAMMING, (U) TUPLE, (U) PRE-PROCESSOR

15. Number of Pages.
(U) NETWORK, 25

16. Price Code.

18. Security Classification
of This Page.

Unclassified

17. Security Classification
of Report.

Unclassified

19. Security Classification 20. Limitation of Abstract.

of Abstract.

Unclassified SAR

NSN 7540-01-280-5500

Standard Form 288 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

